Tỉ số lượng giác của góc nhọn - Môn Toán - Tìm đáp án, giải bài tập, để học tốt Vị trí tương đối của đường thẳng và đường tròn. Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn Tính chất của hai tiếp tuyến cắt nhau. Bài 8. Vị trí tương đối Kinh tuyến trục chính là một kinh tuyến thực ở giữa múi chiếu (chình do vậy tại một điểm trên đường thẳng nói chung góc định hướng và góc phương vị thực khác nhau một lượng bằng độ hội tụ kinh tuyến giữa kinh tuyến thực đi qua điểm đó và kinh tuyến trục, nghĩa là: Cụ thể, hệ số góc của một đường thẳng nằm trên mặt phẳng chứa hệ trục tọa độ x và y được biểu diễn bằng m. Hệ số góc này được định nghĩa là sự thay đổi tọa độ trên trụ y chia cho sự thay đổi tọa độ trên trục x, giữa hai điểm khác biệt của Các dạng toán và phương pháp giải Dạng 1: Xác định một vec tơ, sự cùng phương và hướng của hai vec tơ. Chú ý : Nếu thì : Góc giữa hai đường thẳng. Cho 2 đường thẳng : có vec tơ pháp tuyến và có vec tơ pháp tuyến . Đặt khi đó: Chú ý : + + Nếu 1 và 2 có phương trình y Bài 3.11 (SGK trang 49): Hãy vẽ hai đoạn thẳng AB và MN sao cho AB // MN và AB = MN. ------> Bài liên quan: Giải Toán 7 Bài 9 Hai đường thẳng song song và dấu hiệu nhận biết. Trên đây là lời giải chi tiết Bài 3.10 Toán 7 trang 49 Hai đường thẳng song song và dấu hiệu nhận biết cho các Bài viết vừa tổng hợp lý thuyết về quan hệ giữa tính vuông góc và tính song song, vừa đưa ra ví dụ cụ thể nhằm giúp các bạn nắm vững và áp dụng vào giải toán. Dạng này thường sử dụng mối quan hệ giữa tính song song và tính vuông góc của hai đường thẳng cho jKqdOfv. Ở chương trình Toán lớp 10 các em sẽ được tiếp xúc với các lý thuyết và dạng toán về phương trình đường thẳng. Đây là nền tảng kiến thức liên quan mật thiết đến hình học không gian ở các lớp sau, do đó các em cần nắm thật vững những kiến thức này. Trong bài viết này, Marathon Education sẽ tổng hợp các lý thuyết Toán 10 phương trình đường thẳng nhằm giúp các em hệ thống hóa được kiến thức và nhớ bài dễ dàng hơn. >>> Xem thêm Lý Thuyết Toán 10 Phương Trình Đường Tròn >>> Xem thêm Học Toán lớp 10 Online Hiệu Quả Cùng Marathon Education Lý thuyết Toán 10 Phương trình đường thẳng Nguồn Internet Vectơ của đường thẳng Vectơ chỉ phương \begin{aligned} &\footnotesize\text{Vectơ } \vec{u}\text{ được gọi là vectơ chỉ phương VTCP của đường thẳng nếu}\\ &\footnotesize \ \ \bull \vec{u} \not= \vec{0}\\ &\footnotesize \ \ \bull \text{Giá của } \vec{u} \text{ song song hoặc trùng với } \end{aligned} Chú ý Một đường thẳng sẽ có vô số vectơ chỉ phương. Vectơ pháp tuyến \begin{aligned} &\footnotesize\text{Vectơ } \vec{n}\text{ được gọi là vectơ pháp tuyến VTPT của đường thẳng nếu}\\ &\footnotesize \ \ \bull \vec{n} \not= \vec{0}\\ &\footnotesize \ \ \bull \vec{n} \text{ vuông góc với VTCP của } \end{aligned} Chú ý \begin{aligned} &\footnotesize \bull \text{Một đường thẳng sẽ có vô số vectơ pháp tuyến.}\\ &\footnotesize \bull \text{Nếu }\vec{n} \text{ là một VTPT của đường thẳng thì } k\vec{n} \text{ cũng là một vectơ pháp tuyến của .}\\ &\footnotesize\bull \text{Một đường thẳng được hoàn toàn xác định nếu biết một vectơ pháp tuyến của nó và}\\ &\footnotesize \text{một điểm mà đường thẳng đó đi qua.} \end{aligned} >>> Xem thêm Cách Giải Các Dạng Toán Phương Trình Đường Thẳng Trong Không Gian Các dạng phương trình đường thẳng Dưới đây là tổng hợp các dạng phương trình đường thẳng Toán 10. Phương trình tham số của đường thẳng Xét đường thẳng đi qua điểm xác định M0x0; y0 với VTCP Phương trình tham số của đường thẳng là \begin{cases} x=x_0+tu_1\\ y=y_0+tu_2 \end{cases} Với một tham số t cụ thể, ta xác định được một điểm trên đường thẳng . Mối liên hệ giữa VTPT và hệ số góc \begin{aligned} &\footnotesize\text{Tỉ số }k=\frac{u_2}{u_1} \text{ được gọi là hệ số góc của đường thẳng }u_1\not= 0, \text{k = tanα, với α là góc hợp bởi đường thẳng }\\ &\footnotesize\text{và chiều dương của trục Ox.} \end{aligned} Phương trình đường thẳng đi qua Moxo; yo, có hệ số góc là k y – y0 = kx – x0 Phương trình tổng quát của đường thẳng Phương trình tổng quát của đường thẳng có dạng ax + by + c = 0 a≠0 hoặc b≠0 Nhận xét \begin{aligned} &\footnotesize\bull \text{Nếu }a=0\Rightarrow y=-\frac{c}{b}\ ; \Delta//Ox \text{ hoặc trùng Ox khi c = 0}\\ &\footnotesize\bull \text{Nếu }b=0\Rightarrow x=-\frac{c}{a}\ ; \Delta//Oy \text{ hoặc trùng Oy khi c = 0}\\ &\footnotesize\bull \text{Nếu }c=0\Rightarrow ax+by=0 \Rightarrow\Delta \text{ đi qua gốc tọa độ} \end{aligned} Phương trình đoạn chắn của đường thẳng Một đường thẳng cắt trục Ox và Oy tại 2 điểm lần lượt là Aa;0, B0;b có phương trình đoạn chắn như sau \frac{x}{a}+\frac{y}{b}=1\ a,b\not=0 Phương trình chính tắc của đường thẳng \footnotesize \text{Đường thẳng có VTCP }\vec{u}=u_1;u_2, \text{ đi qua điểm }M_0x_0;y_0 \text{ có phương trình chính tắc là}\\ \normalsize \frac{x-x_0}{u_1}=\frac{y-y_0}{u_2} \text{ với }u_1,u_2\not=0 Vị trí tương đối của hai đường thẳng Xét 2 đường thẳng 1 a1x + b1y + c1 = 0 2 a2x + b2y + c2 = 0 M0x0;y0 là điểm chung của 1 và 2 khi và chỉ khi x0;y0 là nghiệm của hệ phương trình sau 1\begin{cases}a_1x+b_1y+c=0\\a_2x+b_2y+c=0 \end{cases} Khi đó, sẽ có 3 trường hợp xảy ra Hệ 1 có một nghiệm 1 cắt 2 Hệ 1 vô nghiệm 1 // 2 Hệ 1 có vô số nghiệm 1 ≡ 2 Góc giữa hai đường thẳng Đây là một trong những kiến thức quan trọng trong Toán 10 phương trình đường thẳng mà các em cần lưu tâm. Xét 2 đường thẳng 1 và 2 2 đường thẳng cắt nhau sẽ tạo thành 4 góc, khi đó Nếu 1 vuông góc với 2 → góc giữa 2 đường thẳng = 900. Nếu 1 và 2 không vuông góc với nhau → góc giữa 2 đường thẳng là góc nhọn trong số 4 góc được tạo thành. Nếu 1 và 2 song song hoặc trùng nhau → góc giữa 2 đường thẳng này = 00. \begin{aligned} &\text{Góc giữa 2 đường thẳng 1 và 2 kí hiệu là }\widehat{\Delta_1,\Delta_2} \text{ và được xác định theo công thức}\\ &_1 a_1x+b_1y+c_1=0\\ &_2 a_2x+b_2y+c_2=0\\ &\text{Đặt }\varphi=\widehat{\Delta_1,\Delta_2}\\ &cos\varphi=\frac{ \end{aligned} Chú ý 1 ⊥ 2 ⇔ n1 ⊥ n2 ⇔ + = 0 Nếu 1 và 2 có phương trình y = k1x + m1 và y = k2x + m2 thì 1 ⊥ 2 ⇔ = -1 Khoảng cách từ 1 điểm đến đường thẳng Cho một điểm M0x0;y0 và đường thẳng bất kỳ có phương trình tổng quát là ax + by + c = 0. Khoảng cách từ điểm M đến được xác định theo công thức sau dM_0,\Delta=\frac{ax_0+by_0+c}{\sqrt{a^2+b^2}} Tham khảo ngay các khoá học online của Marathon Education Trên đây là những lý thuyết Toán 10 phương trình đường thẳng các em nên ghi nhớ và luyện tập thường xuyên. Các em đừng quên đăng ký lớp học online livestream Toán – Lý – Hóa tại Marathon Education để cùng học tập hiệu quả hơn. Chúc các em luôn học tốt và luôn đạt 8+ trong các bài kiểm tra!

toán 10 góc giữa hai đường thẳng